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The Complex Symmetry Gravitational Theory
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We propose that complex symmetry gravitational theory (CSGT) explain the accel-
erating expansion of universe. In this paper, universe is taken as the double complex
symmetric space. Cosmological solution is obtained within CSGT. The conditions of
the accelerating expansion of universe are discussed within CSGT. Moreover, the range
of equation of state of matter ωε is given in the hyperbolic imaginary space.
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1. INTRODUCTION

One of the most surprising discoveries of the past decade is that expansion
of the universe is currently speeding up rather than slowing down (Riess et al.,
1998). The case receives support from CMB (Spergel et al., 2003) and the observa-
tions of supernovae and gravitational clustering (Perlmutter et al., 1999; Peacock
et al., 2001). The accelerating expansion has been attributed to dark energy by
which the universe is dominated. But, there is no direct evidence of dark energy
and the nature of dark energy remains mysterious. At present, several candidate
for dark energy have been presented. The simplest and most obvious candidate
is cosmological constant (Sahni and Starobinsky, 2000). Although cosmologi-
cal constant appears to satisfy all observations, the fine-tuning difficulties have
prompted theorists to investigate a variety of alternative models where equation
of state of dark energy is time dependent. Popular dark energy models include
Quintessence (Sahni and Wang, 2000), Braneworld models (Sahni and Shtanov,
2003), Chaplygin gas (Kamenshchik et al., 2001), Phantom energy (Caldwell,
2002) and modified gravity (Torres, 2002; Nojiri and Odintsov, 2003). Currently
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J.W. Moffat has proprosed that the nonsymmetric gravitational theory (NGT)
(Einstein, 1956; Moffat, 1980; Moffat, 1988) explains the accelerating expan-
sion of universe (Moffat, 2004), which is a new attempt. Nonsymmetry grav-
itational theory and complex symmetric gravitational theory (CSGT) (Moffat,
1957a, 1957b) are also generalized gravitational theory presented as the unified
field theory of gravity and electromagnetism.

In the following, we shall apply CSGT to explain the accelerating expansion
of universe. In this theory, universe is the double complex symmetry space. Our
paper is organized as follows. We briefly review the foundations of CSGT in next
section. In Section 3, the metric takes the canoncial Gaussian form for comoving
coordinates. We solve Einstein’s field equation without cosmological constant
and obtain the cosmological solution. In Section 4, we investigate that when
satisfying the same condition, matter in hyperbolic imaginary space gives rise to
the accelerating expansion of universe. Furthermore, we give the range of equation
of state of matter ωε in hyperbolic imaginary space. In Section 5, we formulate
our conclusions.

2. THE FOUNDATION OF CSGT

In complex symmetry gravitational theory (CSGT), metric tensor is a complex
symmetric tensor. Correspondingly, connection and curvature are forced to be
complex. The real diffeomorphism symmetry of standard Riemannian geometry
is extended to complex diffeomorphism symmetry.

We consider choosing an complex manifold of coordinates M4
C and an

complex symmetric metric defined by (Moffat, 2000; Wu Ya-bo, et al., 2004;
Wu Ya-bo, 1999).

gµν = sµν + Jaµν, (1)

where sµν and aµν are the real symmetric tensors, the double imaginary unit
J = i, ε. The real contravariant tensor sµν is associated with sµν by the relation

sµνsµσ = δν
σ , (2)

and also

gµνgµσ = δν
σ , (3)

With the complex spacetime is also associated a complex symmetric connection

�λ
µν = �λ

µν + J	λ
µν, (4)

where �λ
µν and 	λ

µν are also the real symmetric tensors. The complex symmetric
connection γ λ

µν is determined by the equations

gµν;λ = ∂λgµν − gρνg
ρ
µλ − gµρ�

ρ
νλ = 0, (5)



The Complex Symmetry Gravitational Theory 863

Furthermore, we obtain the generalized curvature tensor

Rλ
µνσ = −∂σ �λ

µν + ∂ν�
λ
µσ + �λ

ρν�
ρ
µσ − �λ

ρσ �ρ
µν, (6)

and a contracted curvature tensor

Rµν := Rσ
µνσ = Qµν + J Pµν, (7)

where Qµν and Pµν are the real symmetric tensors. From curvature tensor, we can
obtain the four complex Bianchi identities(

Rµν − 1

2
gµνR

)
; ν = 0, (8)

The CSGT action is denoted by (Moffat, 1957a, 2000)

S = Sgrav + SM, (9)

where Sgrav and SM are gravity action and matter action respectively.
We choose a following real action to guarantee a consistent set of field

equations

Sgrav = 1

2

∫
d4x[GµνRµν + (GµνGµν)†], (10)

and the matter part of action is

1√−g

(
δSM

δgµν

)
= 8πGTµν, (11)

whereGµν := √−gg
µν = Sµν + J Aµν , “†” denotes complex conjugation, Tµν =

τµν = τµν + Jτ ′
µν is a complex symmetric source tensor. The variation with re-

spect to gµν yields the field equations

Rµν − 1

2
gµνR = −8πGTµν, (12)

where Rµν = √−gRµν,R = GµνRµν, Tµν = √−gTµν . Dividing the above
equation by

√−g complex field Eq. (12) are

Rµν − 1

2
gµνR = −8πGTµν, (13)

Equation (13) is written as

Rµν − 8πG

(
Tµν − 1

2
gµνT

)
, (14)
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3. COSMOLOGICAL SOLUTION AND MODIFIED
FRIEDMANN EQUATION

Let us consider a real line element

dS2 = −dt2 + α(r, t)dr2 + η(r, t)(dθ2 + sin2 θdφ2), (15)

where α(r, t) and η(r, t) are functions of real r and t. The complex symmetric
tensor gµν is determined by

g00(r, t) = −(1 + J ),

g11(r, t) = µ(r, t) = α(r, t) + Jβ(r, t),

g22(r, t) = γ (r, t) = η(r, t) + Jξ (r, t),

g33(r, t) = γ (r, t) sin2 θ = [η(r, t) + Jξ (r, t) sin2 θ, (16)

Solving the �λ
µν and substituting into Eq. (6), we get

R00 = µtt

2µ
− µt

2

4µ2
+ γtt

γ
− γt

2

2γ 2
, (17)

R11 = −µtt

2
+ µt

2

4µ
+ γrr

γ
− γtµt

2γ
− µrγr

2µγ
− γ 2

r

2γ 2
, (18)

R01 = γtr

γ
− µtγr

2µγ
− γtγr

2γ 2
, (19)

where subscripts mean derivative with respect to t and r respectively.
In complex spacetime, the energy-momentum tensor takes

T µν = [(ρC + pC)UµUν + pCgµν] + J [(ρJ + pJ )U ′µU ′ν + pJ gµν], (20)

where ρC, pC(ρC, pC > 0) and ρJ (ρJ > 0), pJ are energy density and pressure
respectively in real and imaginary spacetime. Moreover ρC, pC are not variable
with ρJ , pJ . We define

sµνU
µUν = −1, aµνU

′µU ′ν = −1, (21)

Tµν = gµαgνβT αβ, (22)

From Eqs. (3), (20) and (22), we get

T = (3pC − ρC) − J 2(ρJ + pJ ) + J (4pJ ), (23)

If we assume by separation of variables

µ(r, t) = α(r, t) + Jβ(r, t) = a2(t)h(r) + Ja2(t) h (r),

γ (r, t) = η(r, t) + Jξ (r, t) = Y 2(t)r2 + JY 2(t)r2, (24)
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Substituting into Eqs. (14) and (19), we obtain a special solution of equation
R01 = 0

a(t) ≈ Y (t), (25)

Therefore, this gives rise to a metric of the form

dS2 = −dt2 + a2(t)[h(r)dr2 + r2(dθ2 + sin2 θdφ2)], (26)

This is the cosmological solution in CSGT. For instance, complex curvature R00

and R11 turn into

R00 = 3
ä

a
= −4πG[(3pC + ρC) + J 2(pJ − ρJ )] − J4πG[(pC − ρC)

+ (2 − J 2)ρJ + (4 − J 2)pJ ], (27)

R11 = (aäH + 2ȧ2h) + hr

rh
+ J (aäh + 2ȧ2h) = 4πGa2h[(ρC − pC)

+ J 2(ρJ − pJ )] + J4πGa2h[(ρC − pC) + J 2ρJ + (J 2 − 2)pJ , (28)

And by the conservation law of energy momentum T µν ; ν = 0, the following
equation is obtained

ρ̇C + ṗC + 3ȧ

a
(ρC + pC) − ṗC

1 + J
+ J

[
(ρ̇J + ṗJ ) + 3ȧ

a
(ρJ + pJ )

]

− J
ṗJ

1 + J
= 0, (29)

where dot means derivative with respect to time.
Assuming h(r) = 1, Eq. (26) is

dS2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θdθφ2)], (30)

The line element Eq. (30) is the spatially-flat FRW metric. And the real and
imaginary parts of complex curvature R00 and R11 are respectively

Q00 = 3ä

a
= −4πg[(3pC + ρC) + J 2(pJ − ρJ )] (27a)

P00 = 0 = 4πG[(pC − ρC) + (2 − J 2)ρJ + (4 − J 2)pJ ], (27b)

and

Q11 = 2ȧ2 + aä = 4πGa2[(ρC − pC) + J 2(ρJ − pJ )], (28a)

P11 = 2ȧ2 + aä = 4πGa2[(ρC − pC) + J 2ρJ + (J 2 − 2)pJ ], (28b)
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By calculating, we obtain J = ε i.e., the universe is the hyperbolic complex
symmetry space. For instance, Eqs. (27a) and (28a) are

ä = −4πG

3
a[(3pC + ρC) + (pε − ρε)], (31)

ȧ2

a2
= 8πG

3

[
ρC + 1

2
(ρε − pε)

]
, (32)

Equations (31) and (32) are modified Friedmann equations, where ρε and pε are
energy density and pressure in hyperbolic imaginary space. Moreover, the relation
of ρC, pC and ρε, pC is

pC − ρC + ρε + 3pε = 0, (33)

4. THE ACCELERATING EXPANSIBLE UNIVERSE

In the section, we study the accelerating expansion of universe in the hy-
perbolic complex symmetry gravitational theory (HCSGT). The equation of state
ωε = pε

ρε

Equations (31) and (32) are rewritten as

H 2 = 8πG

3

[
ρC + 1

2
(ρε − pε)

]
(34)

q = − äa

ȧ2
= − ä

aH 2
= ρC + 3pC + (pε − ρε)

2ρC + (ρε − pε)
, (35)

From Eq. (34), we get 2ρC > pε for H 2 > 0. Since q < 0, we obtain

ρC + 3pC − ρε + pε < 0, (36)

Furthermore, we investigate the condition of the accelerating expansion of
universe if matter in the hyperbolic imaginary space is taken as a new alternative
of dark energy.

If p = 0, Eq. (33) is −ρ + 3pε + ρε = 0 i.e., ωε > − 1
3 . It satisfies the strong

energy condition (SEC) ω ≥ − 1
3 (Sahni, 2004). But dark energy must violate SEC

in order to accelerate, i.e., ωε < − 1
3 Substituting Eq. (33) into Eq. (36), we obtain

ωε > − 1
2 .

From the above analysis, we show if matter in the hyperbolic imaginary space
is taken as a new alternative of dark energy in the HCSGT, the condition of the
accelerating expansion of universe is

−1

2
< ωε < −1

3
, (37)

The result is acceptable and consistent with ref (Turner and White, 1997).
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In the HCSGT, the conversion of energy momentum Eq. (29) turn into

ρ̇C + 1

2
ṗC + 3ȧ

a
(ρC + pC) = 0

ρ̇J + 1

2
ṗJ + 3ȧ

a
(ρJ + pJ ) = 0

Substituting into Eq. (34), we get

H 2 = 8πG

3

[
(1 + z)3(1+ωC )e

− 1
2

∫ d(ρCωC )
dρC + 1

2
(1 + z)3(1+ωε)(1 − ωε)e− 1

2

∫
d(ρεωεε)

dρε

]

(38)

5. CONCLUSIONS

In this paper we have proposed that CSGT may explain the accelerating
expansion of universe. We concretely take a real line element and obtain the
cosmological solution. Furthermore, conditions of the accelerating expansion of
universe are discussed within HCSGT. Moreover, the equation of state of matter
satisfies − 1

2 < ωε < − 1
3 if the matter in the hyperbolic imaginary space is taken

as a new alternative of dark energy.
In above discussion, we have investigated the conditions of the accelerating

expansion of universe within CSGT. But we don’t deeply study the corresponding
properties. These will be explored in further work.
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